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Is the Use of the Difference Likelihood Ratio Chi-square
Statistic for Comparing Nested IRT Models Justifiable?

Abstract

The main purposes of this research are to investigate, by means

of simulation, (a) whether the difference likelihood ratio chi-square

statistic, G2dif, for comparing IRT models is asymptotically distributed

as a chi-square distribution and (b) the accuracy rate of applying G2dif

in selection of nested IRT models. The results based on this study

demonstrate that the usual practice of treating the G2dif as distributed

as a central chi-square distribution is not sound. For short test length,

the proportion of times the correct model is being selected can be very

low. It appears that the G2dif are more likely to be distributed as a

noncentral chi-square distribution. Discussion concerning the

proportion of the right model being selected by the difference statistic

as well as its relative merits in comparison to the AIC and the mk

indices is also included in this study.

KEY WORDS: Difference Likelihood Ratio Chi-square Statistic, Difference Chi-

square Statistic, Item Response Theory (IRT), BILOG, Likelihood Ratio Chi-square

Statistic, Pearson Chi-square Statistic.
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I. Introduction

The issue of model-data fit is of major concern when item response theory

(IRT) models are used for practical testing. More specifically, the concern is whether

or not test items fit the model assumed by practitioners (see, e.g., McKinley & Mills,

1985; Reise, 1990; Rogers, 1987; Smith, 1991; Yen, 1981). It is of course desirable

to have most items fit the assumed model. If not, especially in the presence of

numerous mis-fit items, the issue of model choice is critical. Currently, identifying

the most parsimonious test model that retains the integrity of the observed data is an

important motivation behind item-fit studies (Yen, 1981). However, the issue of

selecting an appropriate IRT model has received less attention than the study of item

fit. Poor model choice can lead to inaccurate conclusions of item dregging, as well as

inappropriate assessment of differential item functioning.

To what extent can a certain IRT model be used to model a given set of

examinees' responses to a test? A common method is to use the likelihood ratio chi-

square goodness-of-fit statistic to measure the degree of data-model fit, as is also the

case in latent class analysis and structural equation modeling, etc.. It is generally

assumed that the likelihood ratio chi-square statistic is asymptotically distributed as a

chi-square distribution with appropriate degrees of freedom as specified by the model.

However, this statistic is not completely valid. This is because, in view of the

numerous possible combination in response patterns, the frequency count of

examinees in many response patterns will be very sparse, thereby violating the

assumption of chi-square statistic that requires most of the expected frequencies be at

least equal to five (see, e.g., Bock & Aitkin, 1981; Gitomer & Yamamoto, 1991;

Reiser, VandenBerg, 1994).

Furthermore, a distinct characteristic in the IRT framework is that item

parameter estimates derived from the joint maximum likelihood estimation may not

be consistent as sample size and the number of items increase. This is because the

abilities of the examinees are unknown and must be estimated along with item

parameters (refer to Baker, 1992 for detailed discussion). Item parameters estimated

by marginal maximum likelihood method (Bock & Aitkin, 1981) do not depend on

the direct estimation of examinees' abilities, but rather on their ability distribution

4



Model Selection in IRT Models 3

(Baker, 1992). Thus, the estimate of the likelihood ratio chi-square statistic could be

affected by special characteristics of the item parameter estimates.

Traditionally, the difference or component chi-square (G2dif) is used for the

comparison of the relative fit of various IRT models with different parameter

restrictions (e.g. Bock & Aitkin, 1981; Fischer & Parzer, 1991; Gitomer &

Yamamoto, 1991), as well as for the assessment of differential item functioning

(Camilli & Shepard, 1994; Thissen, Steinberg & Wainer,1993). This statistic is

basically a ratio of the likelihood ratio chi-square statistic derived from the compact

model to that derived from the general or subsuming model. Numerically, it is

computed as the change in likelihood ratio chi-square statistics between a pair of

hierarchically related models. Based on the additivity property of the likelihood ratio

chi-square, G2d,f is usually presumed to be asymptotically distributed as a chi-square

distribution, with its degrees of freedom equal to the difference of the degrees of

freedom between the two corresponding models. Yet as discussed above, the

likelihood ratio chi-square statistic corresponding either to the subsuming or the

nested model may not be chi-square distributed in the first place. Hence, the overall

question raised in the present study is whether the use of the difference likelihood

ratio chi-square statistic for comparing hierarchically nested IRT models (i.e. one

model is a constrained form of the other) valid?

More specifically, the main purposes of this research are to investigate, by

means of simulation, (a) whether the difference likelihood ratio chi-square statistic for

comparing IRT models is asymptotically distributed as a chi-square distribution and

(b) the accuracy rate of applying G2
dif in selection of nested IRT models. Discussion

concerning the proportion of the right model being selected by the difference statistic

as well as its relative merits in comparison to the AIC (Bozdogan, 1987) and the mk

indices (McDonald & Mok, 1995) will also be included in this study.

Presented are a brief review of background theory in section two, a description

of the methodology in section three, the results and discussion in section four, and the

conclusion in section five.

5
BEST COPY AVAILABLE



Model Selection in IRT Models 4

H. The Likelihood Ratio Chi-square for Model Comparison

A, Likelihood Function of IRT Models

Under the three-PL logistic model (see Baker, 1992; Hambleton &

Swaminathan, 1985; Mislevy & Bock, 1990), the probability, 13,i, of a correct response

to the ith item for the jth examinee with ability Oj is given by:

epai(ei-bi)

Pi; (0j) = Ci (1 ci)
epai(Orbi)

(1)

where a, is the item discrimination, b, is the item difficulty, c, is the lower asymptote

parameter (also known as the guessing parameter), and D (usually equal to 1.702) is a

scaling factor. A two-PL model is attained if the guessing parameter c, is constrained

to zero for all items in (1) above. A one-PL model is a restricted form of the two-PL

model by further constraining the item discrimination index a, to be identical or equal

to one for all items.

Assuming that the local independence assumption holds, given an examinee

with ability 0 who responds to a set of n items with the response pattern u, then the

probability of obtaining the response pattern u given 0 and the item parameter vector

(a, b, c) can be computed by:

P(Mle, 4) =
i=1

where Q = 1 - P. If A is randomly sampled from a density distribution of ability g(0),

the unconditional probability is given by (see Baker, 1992; Mislevy & Bock, 1990):

(2)

2P(u,014) 111:TiQh1g(0) (3)
i=1

Then, the marginal probability of obtaining the response pattern u is obtained by

integrating out the ability parameter fi from the left side of (3), thereby giving:

P(u14) = j P(u10,4)g(0)d0 = (4)

BEST COPY AVAILABLE
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Model Selection in IRT Models 5

As a result, the item parameters can be estimated without the estimation of the 0

parameters. This marginal probability of obtaining the response patterns u , P ( ),

hereafter denoted by rcu, can be approximated to any desired degree of accuracy by the

Gauss-Hermite quadrature via computing the sum:

P(x = u Xk)A(Xk) (5)

Here Xk represents a tabled quadrature point (node), and A(Xk) is the corresponding

weight which is related to the height of the density g(0) in the neighborhood of the

node Xk (see Stroud & Sechrest, 1966 for details).

Now let the subscript u represent a specific response pattern, ru denote the

number of examinees obtaining that specific response pattern, and s represent the

number of distinct response patterns observed. In general, there are 2" possible

response patterns for n binary items, hence s 2", ignoring those patterns with ru = 0.

Thus,

E ru = N

where N is the sample size. The likelihood function is then defined as the joint

probability of all examinee's response patterns and is given by

Taking logarithm of Equation 7 results in

L (Try.
u.1

In L = k + r E in(nu),
u=,

(6)

(7)

(8)

where k is a constant which does not influence the estimation of the item parameters.

The item parameter estimates are obtained by maximizing the log likelihood function

presented in Equation 7. More specifically, they are obtained by differentiating In L

with respect to the item parameters a, b, and c, and solving the subsequent likelihood

equations simultaneously. If the underlying shape of the ability distribution is

correctly specified, the marginal maximum likelihood estimator can be consistent as

the number of test items and the sample size increase (refer to Seong, 1990).

BEST COPY AVAILABLE
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Model Selection in IRT Models 6

B. Testing the Goodness-of-fit of the IRT Model

When data from a large sample of examinees is available, the model-data fit

may be tested either for the whole test or item by item. The likelihood ratio goodness-

of-fit chi-square statistic for testing the assumed model against a general multinomial

alternative is given by (Bock & Aitkin, 1981)

G2= 2(E ru In ru
TruN

(9)

where G2 is equal to -2 In L as presented in Equation 8. This statistic may be

asymptotically distributed as a chi-square distribution with s - mn -1 degrees of

freedom (where m is the number of item parameters in the model).

However, if the number of all possible respOnse patterns (2") is large relative to

the sample size N, then most of the expected frequencies of the response patterns

(nu N) will be less than 5. This setting is quite common in practical testing situations.

Bock and Aitkin(1981) suggested that the frequencies of response patterns with small

expectations should be pooled until all expected frequencies equal or exceed 5. After

pooling, the likelihood ratio chi-square statistic with s, - mn -1 degrees of freedom

(sp is the number of response patterns after pooling), then provides a conservative test

of data-model fit. Unfortunately, the likelihood function in Equation 8 has not actually

been maximized in the pooled data (Bock & Aitkin, 1981). In addition, the way of

pooling data is subjective and no IRT computer software at present can provide this

kind of test when pooling data is necessary. Consequently, the fit of the model has

seldom been assessed for a whole test in studies reported in the literature, except for

the case of a short test with a large of number of examinees, such as the empirical

dataset (5 test items by 1000 examinees) of the Law School Aptitude Test (LSAT)

that were used in, among others, Bock and Lieberman (1970).

C. Model Selection in IRT Models

Regarding the choice of an appropriate IRT model, although the true model is

never known, the usual practice is to determine if some models fit an observed dataset

better than the others. One way to do this is to compute the likelihood ratio goodness-

BEST COPY AVAILABLE



Model Selection in IRT Models 7

of-fit chi-square statistics of the relevant models together with their associated degrees

of freedom. But as explained above, the likelihood ratio chi-square statistics, in most

cases. may not be appropriate for assessing data-model fit in IRT modeling. An often

used alternative approach is to compare the relative fit of the two 1RT models. Let

G2,, be the likelihood ratio chi-square statistic of a more general IRT model, while G2

is the corresponding statistic of a more constrained or nested version of the former

model. The statistic used to assess the improvement in fit of the augmented model

over the compact model is by the difference chi-square which can be expressed as:

2(ln Lc)G2dif G2c G2g = + 2(ln Lg) (10)

where In L c and In L can be derived from Equation 8. (Note that even for the same

dataset, different IRT computer programs may handle either the constant k or the

metric of the item parameters differently. Otherwise, they may employ different

estimation algorithms. Thus the value of the -2 log likelihood reported in the

computer output may differ from program to program).

It is important to notice that several assumptions have to be satisfied in order

for the G2dif statistic to be approximately distributed as a chi-square distribution with

its degrees of freedom equal to the degrees of freedom of the nested model minus that

of the subsuming model. They are, among others, (a) the two models should be

hierarchically related, (b) the fundamental IRT assumptions have been met in the

estimation of both models, and (c) the more general of the two models provides a

more proper specification for the data (see Holt & Macready, 1988).

Other properties of the difference chi-square statistic have been pointed out by

Steiger, Shapiro & Browne (1985) in their seminal paper. Specifically, they

demonstrated that the asymptotic intercorrelations among the chi-square statistics

calculated for hierarchically related models on the same dataset can be quite high.

However, the intercorrelations between the chi-square statistics and the sequential chi-

square statistics computed from pairs of nested models should be asymptotically

independent of each other. Also, the correlations among the difference chi-squares

should be independent of each other.

BEST COPY AVAILABLE
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Besides the difference chi-square. alternative model selection procedures are

also pursued in this paper for comparison. A brief description is included here for

handy reference. The first one is by means of Akaike's information criterion, or AIC,

which is defined as (see Bozdogan, 1987)

AIC = -2 In L + 2m, (11)

with m denoting the number of parameters estimated by an IRT model. The model of

choice is usually regarded as the one that yields the lowest AIC value. This is by

virtue of its definition; AIC penalizes the more complicated models in favor of the

more parsimonious models. This index is included in the present study because its

performance in terms of selecting an IRT model is not very well known. Another

alternative is the mk index which was originally suggested in the context of structural

equation modeling (McDonald, 1988), but later introduced by McDonald and Mok

(1995) as a measure of the goodness-of-fit for IRT models. It is defined as follows:

1
- (dk)

mk = e 2 (12)

where dk is, in turn, defined as (G2 - df)/N. Here dk is actually a measure of the

non-centrality parameter. The index mk has the property that its values are scaled

within the range from zero to one, and that the larger its value, the better the fit of the

corresponding model. Since this is a relatively new statistic, its performance is not

quite known and is thus included for investigation in the present study. Unfortunately,

BILOG (Mislevy, Bock, 1990) does not report G2 for tests longer than 10 items;

hence the study of the performance of mk is confined to the test length =5 situation

only.

BEST COPY AVAILABLE
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III. Methodology

In this section, an overview of the research design is first described followed

by a discussion of the specific details as well as some explanation of the rationale.

A. Overview

Two hundred replications of simulated test data for two test lengths (items =5

and 50) in combination with two sample sizes (N=1000 and 2000) were generated

from'an existing item bank according to the 1-PL, 2-PL and 3-PL models. The

combination of 5 items and 1000 subjects has been used in a number of studies and

serves as a base for comparison. With knowledge of the true model underlying each

data set, other IRT models were fitted to the data and the corresponding difference

likelihood ratio chi-square statistic was calculated. These difference chi-square

statistics were then assessed to see if they were approximately distributed as a chi-

square distribution. Also, the intercorrelations of the various chi-square statistics

were computed.

The likelihood ratio chi-square statistic is usually computed after item

parameter estimates that will maximize the likelihood function are chosen. But as

discussed earlier, the characteristics of the underlying 0 distribution may affect the

estimation of the item parameters and may result in an incorrect estimation of the

likelihood ratio chi-square statistic. In order to minimize this problem, the marginal

maximum likelihood estimation procedure was used in this study to estimate the item

parameters, while assuming that the underlying 0 distribution was assumed to be

known for the 5-item test. The ability distribution for the 50-item test were

empirically estimated. All analyses were performed using the BILOG software.

B. The Simulation of Test Data

Test Length (5. 501: The items together with their item parameters used to generate

the two simulated tests in this study were selected from an existing Math Item Bank.

At present it contains about 220 test items and was constructed by one of the public

schools on the Eastern shore. First, 5 items were randomly selected to form the 5-

item test. In practice, a 5-item test is too short to precisely measure an examinee's

BEST COPY AVAILABLE
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ability. There were two reasons for constructing the 5-item test. The first reason was

that the expected frequency for each possible response pattern would probably be

larger than 5, thereby meeting the requirement of the chi-square test. In this case, the

total possible number of response patterns would amount to 32 (=25). The expected

frequency for each pattern would then be 31.25 for a sample size of 1000 examinees.

Another reason was to follow the tradition of a long line of research, where two

sections of the Law School Aptitude Test (LSAT), each with 5 items, was first studied

by Bock & Lieberman (1970) and later re-analyzed by Bock & Aitkin (1980),

Bartholomew (1980), Christoffersson (1975), McDonald & Mok (1995), and Muthen

(1978). Thus, a 5-item test was included in the present study and to serve as a base

for comparison of the appropriateness of applying the likelihood ratio chi-square test

for model selection.

Next to produce the 50-item test, an additional 45 items were randomly

selected from the item bank and combined with the five previously selected items.

Tables 1 and 2 present some descriptive statistics of the item parameters used to

simulate the short and the longer tests. Notice that when test-score data were

simulated according to the one-PL model later on, the values of 1.0 and 0.0 were

assigned for all the discrimination indices ai and the guessing parameters ci,

respectively. For the two-PL datasets, the values of 0.0 were used for all the guessing

parameters.

Table III-1
Descriptive Statistics of the Item Parameters for the 5-Item Test

a
Model Mean Range Mean Range Mean Range

One-PL 1.00 1.00 to 1.00 -0.70 -1.66 to 0.29 0.00 0.00 to 0.00
Two-PL 0.80 0.60 to 1.03 -0.70 -1.66 to 0.29 0.00 0.00 to 0.00
Three-PL 0.80 0.60 to 1.03 -0.70 -1.66 to 0.29 0.13 0.06 to 0.20

BEST COPY AVAILABLE
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Table III-2
Descriptive Statistics of the Item Parameters for the 50-Item Test

a
Model Mean Range Mean Range Mean Range

One-PL 1.00 1.00 to 1.00 -0.40 -2.50 to 3.00 0.00 0.00 to 0.00
Two-PL 0.90 0.30 to 1.40 -0.40 -2.50 to 3.00 0.00 0.00 to 0.00
Three-PL 0.90 0.30 to 1.40 -0.40 -2.50 to 3.00 0.16 0.04 to 0.31

Ability and Sample Sizes (1000. 20001: In this study, the ability parameters were

randomly selected from the standard normal distribution, N(0,1). First, 1000 ability

parameters were selected and used for N=1000 datasets. Then, for N=2000 datasets,

an additional 1000 ability parameters were selected and combined with the previous

ability parameters of the 1000-sample size datasets. This way of constructing ability

parameters has previously been used by McKinley and Mills (1985). These ability

parameters were held constant across the 200 replications of data under each

combination of study conditions. The reason for this decision was to retain the same

metric for the estimated item parameters across the 200 replications for the test

length=5 situation. (But see the discussion in the Calibration and Analysis subsection

below for the test length=50 situation). Furthermore, since the likelihood ratio chi-

square was calculated after the estimation of the item parameters, the above procedure

retained the same metric for the likelihood ratio chi-square statistic across the 200

replications within any specific study condition.

Simulation of Datasets: The probability of each examinee answering an item

correctly was computed according to Equation (1) or the like depending on the

underlying IRT model. Uniform random numbers in the interval [0,11 were then

generated and compared with the examinees' probabilities of success. If the

probability was larger than the corresponding generated random number, the

examinee was scored 1, otherwise the examinee was scored 0. A total of twelve

combinations of conditions (two test lengths X two sample sizes X three IRT models)

were considered in this study. Two hundred replications were generated under each

condition.

BEST COPY AVAILABLE 13
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C. Calibration and Analysis

All likelihood ratio chi-square statistics were computed by using BILOG. Two

options in BILOG deserve further explanation.

The first one is the FREE option, which when adopted, will instruct the program to

empirically estimate the a distribution of the respondents. Otherwise, the default is to

assume the ability parameter to be distributed as a unit normal. In the present study,

this option was invoked for the test length=50, but not for the test length=5 situation.

This was because for a short test, the empirical posterior of the distribution of the .

ability parameter may not be accurate. Hence, the ability distribution was assigned

the default unit normal distribution, which is the same as the underlying distribution

of the simulated dataset. For a longer test, the empirical posterior can be quite

accurately estimated, and so the FREE option was adopted. Moreover, when FREE

was used for the test length=50, owing to sampling fluctuation, the estimated posterior

ability distribution might be a little bit different from replication to replication.

Consequently. the metric of the item parameters might also be different from

replication to replication. Strictly speaking, item linking should be performed.

However, such differences should be minimal as each dataset was generated from the

identical set of ability parameters which were held constant across replications across

each combination of study condition. Finally, in a real life situation, the ability

distribution is actually unknown. The FREE option was used to estimate the latent

ability distribution.

The second one is the FLOAT option. If this option is adopted, the means of

the item parameter prior distributions will be estimated along with the item

parameters (see Mislevy & Bock, 1990). Otherwise, the means of the item parameters

distribution will be fixed at their default values during the estimation process. In this

study, FLOAT was invoked for test length=50, but not for test length=5.

With the knowledge of the true model behind each dataset, three ERT models

(1-PL, 2-PL, and 3-PL) were fitted to each of them and the corresponding likelihood

ratio chi-square statistic assessed. Two hundred likelihood ratio chi-square statistics

were then separately obtained for the replications within each combination of

designed conditions. Afterward, the following analyses were conducted:

14
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(1). In order to determine if the difference chi-square statistic was really

chi-square distributed, the distributions of the observed G2d,f statistics were examined

by comparing them to the theoretical central chi-square distributions with the

appropriate degrees of freedom. Following Holt & Macready (1989), each

distribution of 200 observed G2d1f statistics was classified into 10 intervals as defined

by the set of 0th, 10th, .., 90th, and the 100th quantiles of the central chi-square

distribution with 9 degrees of freedom. Each of the intervals will, therefore, contain

an expected frequency count of 20. A Pearson chi-square statistic with 9 degrees of

freedom was computed to assess the fit of the observed G2dif to a central chi-square

distribution.

(2). In addition to the overall fit, each of the observed G2dif distributions was

examined by comparing its observed mean and standard deviation with its

corresponding expected mean and standard deviation.

(3). The intercorrelations among the likelihood ratio chi-square statistics computed

for each model as well as their relationship with the various difference chi-squares

computed from pairs of hierarchically related models were examined.

(4). The proportion of times when the true models were correctly chosen over the

attempted models by the difference chi-square, the AIC and the mk indices were also

computed for comparison purposes.

BEST COPY AVAILABLE
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IV. Results and Discussion

A. The Distribution of the Difference Likelihood Chi-square Test

The observed distributions of the G2dif for each combination of study condition

were first examined by comparing the observed mean and standard deviation with

their expected values. If the difference statistics were really distributed as a chi-

square distribution, then for test length=50, the theoretical mean of the difference chi-

square between the 1-PL and the 2-PL models would be 50 and the corresponding

standard deviation would be 10 (S.D. = J2df = Vidd ). The values for the difference

between the 1-PL and 3-PL, and between the 2-PL and 3-PL were similarly

calculated. The results are listed in Table IV-1. As seen there, the observed means

and standard deviations were not close to the corresponding expected values. It was

especially the case for the situation when sample size=2000, and when simpler models

were fitted to datasets that were generated by more complicated models.

Table IV-1
Comparisons of the observed means and standard deviations of difference chi-square
statistics, G2d,f, with their expected values when test length=50 (Sample Sizes = 1000,

2000; Replications = 200)

Model
Comparison

True Model

N
One-PL

1000 2000
Two-PL

1000 2000
Three-PL

1000 2000

1 vs 2 M (50.00) 45.97 30.60 655.36 1260.59 597.28 1159.30

SD(10.00) 18.67 25.86 52.52 105.15 45.25 65.73

1 vs 3 M (100.0) 90.34 107.18 699.82 1342.49 706.14 1352.38

SD(14.14) 19.81 34.57 50.99 103.95 50.71 72.93

2 vs 3 M (50.00) 44.38 76.58 44.46 81.90 108.86 193.08

SD(14.14) 20.47 37.23 18.14 26.93 21.12 27.95

* Expected statistics are given in parentheses.

The distributions of the difference chi-square were then examined according to

their overall fit to central chi-square distributions with 9 degrees of freedom. The

results are presented in Table IV-2 below. All the goodness-of-fit tests were

statistically significant at the .05 level, and hence none of the distributions of the

observed difference chi-square were distributed as a central chi-square distribution.

1 6 BEST COPY AVAILABLE
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Similar to Table IV-1. Table IV-2 indicates that the goodness-of-fit was worse under a

larger sample size, and when the true model was more complicated than the attempted

model.

Table IV-2
The Pearson chi-square statistics for assessing the fit of the observed G2dif statistics to
a central chi-square distribution when test length=50 (Sample Sizes =1000, 2000;
Replications = 200)

One-PL
True Model

Two-PL Three-PL

Sample Size N
1000 2000 1000 2000 1000 2000

Model Comparison
1 vs 2 113.50 604.30 1800.00 1800.00 1800.00 1800.00
1 vs 3 148.20 179.10 1800.00 1800.00 1800.00 1800.00
2 vs 3 291.30 746.50 162.80 888.30 1663.70 1800.00

For test length=5, the observed and the expected means and standard

deviations of the difference chi-square between pairs of nested models are presented

in Table IV-3. The observed descriptive statistics were not close to the corresponding

expected values. When the 3-PL was attempted to fit to datasets generated either from

the 1-PL or the 2-PL model, the means of the difference chi-square statistics took on a

negative value, which is rather unusual.

Table IV-3
Comparisons of the observed means and standard deviations of difference chi-square
statistics, G-dif, with their expected values when test length=5 (Sample Sizes = 1000,
2000; Replications = 200)

Model
Comparison

True Model

N

One-PL
1000 2000

Two-PL
1000 2000

Three-PL
1000 2000

1 vs 2 M (5.00) 4.25 3.78 13.39 23.66 7.57 10.21
SD(3.30) 3.42 2.90 7.29 9.45 4.65 6.36

1 vs 3 M (10.0) -1.71 -2.25 9.94 19.14 10.86 15.19
SD(4.47) 6.07 5.83 7.97 10.30 6.25 8.97

2 vs 3 M (5.00) -5.96 -6.02 -3.45 -4.52 2.29 4.99

SD(3.30) 4.77 5.34 4.41 5.06 4.05 6.26

* Expected statistics are given in parentheses.
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The distributions of the difference chi-square were then examined in exactly

the same way as under test length=50. The goodness-of-fit statistics are presented in

Table IV-4. The goodness-of-fit tests were again statistically significant at the .05

level, and the distributions of the observed difference chi-square under test length=5

were not distributed as central chi-square distributions either.

Table IV-4
The Pearson chi-square statistics for assessing the fit of the observed G2dif statistics to
a central chi-square distribution when test length=5 (Sample Sizes =1000, 2000;
Replications = 200)

One-PL
1 rue Model

Two-PL Three-PL

Sample Size N
1000 2000 1000 2000 1000 2000

Model Comparison

1 vs. 2 45.30 46.60 765.80 1682.30 141.10 309.60
1 vs. 3 336.30 1387.80 95.30 555.90 44.50 260.60
2 vs. 3 1531.20 1495.00 1301.60 1370.30 137.60 152.80

One possible reason why the difference statistics were not distributed as

central chi-square distributions may parallel the study by Holt and Macready (1989) in

the context of latent class analysis. In both situations, the more parsimonious models

(e.g. 1-PL, 2-PL) were obtained from the subsuming model (the 3-PL in this study) by

constraining some parameters (here the guessing parameters) to their boundary values

(zero in this study). Hence, a regularity condition was violated and the difference

statistics may not have been chi-square distributed.

As regards the anomaly of obtaining negative difference chi-squares under

marginal maximum likelihood estimation for test length=5, with prior distribution of

0 fixed (see Table IV-3), the problem may be related to the fact that this test is

basically an easy test (see Table III-1). But in this study, the 0 distribution was fixed

at N(0,1), so there were relatively fewer low ability parameter values generated.

Hence, the guessing parameters were not appropriately estimated as there were few

observations available, thus rendering their standard errors very large. Under these
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circumstances. Thissen & Wainer (1982) indicated that "the large covariance between

lower asymptote and location (difficulty) then causes this uncertainty to move

partially to the estimate of location. With more difficult items the effect is lessened

somewhat. The two-parameter model has problems as well, but they are far less

severe" (Thissen & Wainer, 1982, pp. 403-404). For this reason, both the difficulty

and the guessing parameters were not accurately estimated under the 3-PL. The final

model may not "fit" better than the 1-PL and 2-PL models, thereby producing

negative difference chi-square statistics. This was especially the case when the

datasets were generated from the 1-PL model. The problem of negative difference

statistics did not occur in test length=50 because the item parameters were quite

accurately estimated. Also for a longer test, the estimate of the marginal probability

of a response pattern is more reliable and accurate.

B. The Proportions of Times the True Models Were Correctly Chosen

The proportions of times the true models were chosen over the attempted

models by the difference chi-square and AIC for test length=50 under various

situations is presented in Table IV-5. Selection of nested models by the mk index is

not considered for the reason explained in section 2 above.

Although the difference chi-square statistics were not central chi-square

distributed, their performance in terms of the proportions of times the true models

were correctly chosen over the attempted model were relatively high, ranging from

.885 to 1.00 for sample size=1000. However, when the sample size=2000 and when

the 3-PL was attempted to fit data generated either from the 1-PL or the 2-PL, the

proportions of times the true models were correctly chosen can be quite low, ranging

from .33 to .725. As seen from Table IV-5 regarding the performance of AIC, the

proportions of times the true models were correctly chosen were quite high, especially

when the true models were less complicated than the attempted models. This is

basically consistent with the knowledge that AIC penalizes the more complicated

model.

BEST COPY AVAILABLE



Model Selection in IRT Models 18

Table IV-5
The proportion of times the true models were chosen over the attempted models by
the difference chi-square and AIC for test length = 50 (Sample Sizes=1000, 2000;
Replications = 200)

Model
Comparison

True Model

One-PL Two-PL Three-PL
N 1000 2000 1000 2000 1000 2000

1 vs 2 0.885 0.915 1.000 1.000
1 vs 3 0.955 0.725 1.000 1.000
2 vs 3 0.900 0.325 0.965 1.000

AIC 0.995 0.990 0.990 0.725 0.675 1.000

The results for test length=5 are presented in Table IV-6. Here the difference

chi-squares were less likely to identify the true models, especially when the true

models were more complicated than the attempted models. The performance of AIC

was even worse when the underlying models were more complicated models. Based

on Table IV-6, the mk index appeared to prefer models in this order: 2-PL, 1-PL, then

3-PL, regardless of sample sizes.

Table IV-6
The proportion of times the true models were chosen over the attempted models by
the difference chi-square, AIC and mk for test length = 5 (Sample Sizes =1000, 2000;
Replications = 200)

Model True Model
Comparison

One-PL Two-PL Three-PL

N 1000 2000 1000 2000 1000 2000
1 vs. 2 0.945 0.970 0.585 0.945
1 vs. 3 1.000 1.000 0.125 0.320
2 vs. 3 0.990 1.000 0.030 0.135

AIC 1.000 1.000 0.000 0.000 0.000 0.000

mk 0.685 0.725 0.870 0.940 0.285 0.425

Basic descriptive statistics for the mk index are presented in Table IV-7 below.
Obviously, most of the values were very close to the upper limit, and the spread of

values was extremely small.
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Table IV-7
The descriptive statistics of Mean and Standard Deviation for mk index
(Test Length = 5: Sample Sizes=1000. 2000; Replications = 200)

Attempted I rue Model
Model One-PL Two-PL Three-PL

N
1000 2000 1000 2000 1000 2000

M SD M SD M SD M SD M SD M SD
One-PL .999(.004)1.000(.002) .994(.005) .995(.003) .997(.004) .998(.002)
Two-PL .998(.003) .999(.002) .999(.004)1.000(.002) .998(.004) .999(.002)
Three-PL.993(.003) .997(.002) .994(.004) .997(.002) .997(.003) .999(.001)

In addition, for test length=5, the likelihood ratio goodness-of-fit chi-square

statistic for testing the attempted model against a general multinomial alternative can

be computed according to Equation 9. The proportions of times the attempted models

were identified to fit the datasets by the likelihood ratio chi-square are presented in

Table IV-8. When the true model was the 1-PL, it can be computed from the table

that the Type I error rates of the goodness-of-fit test in identifying the true model

amounted to 0.12 and 0.09, for sample size=1000 and 2000 respectively. Likewise,

when the true model was the 2-PL, the corresponding Type I error rates were 0.11 and

0.10 for the two respective sample sizes. Lastly, when the true model was the 3-PL,

the corresponding Type I error rates jumped to 0.265 and 0.175 respectively. In all

cases, the probability of committing Type I error by the goodness-of-fit test statistics

exceeded the 0.05 nominal alpha rate. In addition, the values off the diagonal in Table

IV-8 denote the probabilities of committing Type II error under various situations. As

can be seen there, the power of the likelihood ratio chi-square test can be quite low.

Table IV-8
The proportions of times the attempted models were identified to fit the datasets by
the likelihood ratio chi-square goodness-of-fit test (Test Length = 5; Sample Sizes
=1000, 2000; Replications = 200)

Attempted
Model

True Model

One-PL Two-PL Three-PL
N 1000 2000 1000 2000 1000 2000

One-PL 0.880 0.910 0.620 0.290 0.750 0.645
Two-PL 0.865 0.855 0.890 0.900 0.845 0.845
Three-PL 0.300 0.340 0.455 0.480 0.735 0.825
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C. The [ntercorrelation Matrix among Chi-square Statistics.

The intercorrelations among the various likelihood ratio chi-squares as well as

with the difference chi-squares computed from pairs of nested models when the test

length=50 are provided in Table IV-9. The numbers in parentheses are correlations

under sample size=2000, while those without parentheses are correlations under

sample size=1000 situation.

Table IV-9
The intercorrelations among the various likelihood ratio chi-squares as well as with
the difference chi-squares computed from pairs of nested models when the test
length=50 (Sample Sizes =1000, 2000; Replications =200)

True
Model

Attempted Model
One Two Three D12 D23 013

_1 One 1.0(1.0) .99(.99) .99(.99) .01(-.01) .14( .02) .16( .02)
_2 1.0(1.0) .97(.94) .97(.94) .19( .19) -.08( .05) .17( .21)
_3 1.0(1.0) .97(.97) .96(.96) .16( .08) .04( .06) .16( .09)

_1 Two 1.0(1.0) .99(.99) -.08(-.09) .18( .06) .12( -.00)
_2 1.0(1.0) .99(.99) -.05(-.16) -.02( .11) -.06(-.13)
_3 1.0(1.0) .99(.99) -.08( -.16) .04( .04) -.05( -.13)

_1 Three 1.0(1.0) -.03(-.04) .08(-.06) .06(-.09)
_2 1.0(1.0) -.03(-.14) -.10( .02) -.07(-.14)
_3 1.0(1.0) -.08(-.17) -.08(-.06) -.10(-.18)

-1 D12 1.0(1.0) -.49(-.45) .44( .27)
-2 1.0(1.0) -.26(-.17) .94( .97)
-3 1.0(1.0) .04( .06) .91( .92)

-1 D23 1.0(1.0) .57( .74)
-2 1.0(1.0) .09( .08)
-3 1.0(1.0) .45( .44)

-1 013 1.0( 1.0)
-2 1.0( 1.0)
-3 1.0( 1.0)

In the table, datasets that were actually generated by the 1-PL, 2-PL and 3-PL

models were given the numerical labels _1, _2, and _3, respectively. The verbal

labels ONE, TWO, and THREE represent the attempted models to fit the data were

the 1-PL, 2-PL and the 3-PL, respectively. For example, the number .99 in the first

row and second column of the matrix represents a strong positive linear correlation

between the likelihood chi-square statistics produced by fitting the 1-PL to datasets

generated by the 1-PL model with those produced by fitting the 2-PL model to the

same datasets. Likewise, the number .97 in the second row and second column

represents a strong positive linear correlation between the likelihood chi-squares
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produced by fitting the 1-PL to datasets generated by the 2-PL model with those

produced by fitting the 2-PL model to the same datasets.

The label D12 represents the difference chi-square statistics produced by

fitting the 1-PL and 2-PL to datasets generated by the same model. Consider, for

example, the number .01 in the first row and fourth column of the matrix. Here the

underlying true model is the 1-PL, so .01 denotes no linear correlation between the

likelihood chi-squares produced by fitting the 1-PL with the difference chi-squares

derived from fitting the 1-PL and 2-PL to the same datasets.

Apparently, the upper left quadrant of the matrix indicates that, regardless of

what the true model was, the intercorrelations among the likelihood chi-squares

derived from various models were very high. The correlations between the likelihood

chi-squares and the various difference chi-squares in the upper right quadrant were

quite weak, indicating that they were independent from each other. One reason

behind this observation is that, using 1-PL and 3-PL for illustration, the G2 values for

the 3-PL models are larger than those computed for the 1-PL models for some

datasets, while smaller for the other datasets.

Finally, the intercorrelations among the differences chi-squares could be quite

high, which is different to those found in Steiger et al. (1985). It should be pointed

out, however, that the theorems in Steiger et al. were stated in relation to noncentral

chi-square distributions.

The results for test length=5 are presented in Table IV-10 below. Basically,

the same patterns were found conformable to the previous table, except perhaps the

upper right quadrant. There the correlations were moderately high in some instances.
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Table IV-10
The intercorrelations among the various likelihood ratio chi-squares as well as with
the difference chi-squares computed from pairs of nested models when the test
length=5 (Sample Sizes =1000, 2000; Replications =200)

True

Model
Attempted Model
One Two Three D12 D23 D13

_1 One 1.0(1.0) .90(.93) .65(.73) .55( .33) .31( .16) .55( .31)

_2 1.0(1.0) .70(.61) .63(.50) .74( .82) .02( .13) .69( .81)

_3 1.0(1.0) .84(.76) .69(.42) .54( .73) .36( .42) .63( .81)

_1 Two 1.0(1.0) .73(.77) .12(-.04) .33( .21) .32( .17)

_2 1.0(1.0) .81(.73) .05( .04) .18( .35) .14( .21)

3 1.0(1.0) .83(.50) -.01( .11) .41( .61) .26( .49)

_1 Three 1.0(1.0) .06( .02) -.40(-.47) -.28(-.41)
_2 1.0(1.0) .13( .10) -.42(-.38) -.12(-.09)
_3 1.0(1.0) -.03( .11) -.17(-.39) -.13(-.20)

-1 D12 1.0(1.0) .07(-.10) .62( .41)

-2 1.0(1.0) -.14(-.09) .84( .87)

-3 1.0(1.0) .02( .01) .76( .72)

-1 D23 1.0(1.0) .83( .87)

-2 1.0(1.0) .43( .41)

-3 1.0(1.0) .67( .71)

-1 D13 1.0(1.0)
-2 1.0(1.0)
-3 1.0(1.0)
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V. Conclusion

All in all, based on the above examination and discussion, it is clear that the

usual practice of treating the difference chi-square as distributed as a central chi-

square distribution is not sound. For short test length, the proportion of times the

correct model is being selected can be very low. It appears that the difference chi-

squares are more likely to be distributed as a noncentral chi-square distribution.

Hence a natural extension of the present study is to estimate the noncentral parameter

and then test if the difference statistic is distributed as a noncentral chi-square with

appropriate degrees of freedom.

So far as the performance of the selection indices in the context of IRT is

concerned, both the AIC and the mk indices are not very satisfactory. A promising

index, namely, root mean square error of approximation (RMSEA), has recently

drawn the attention of researchers in structural equation modeling (Steiger, 1980;

McDonald & Mok, 1995). This index has not been pursued in the present study due

to the fact that some of the G2 values were less than their corresponding degrees of

freedom. Apparently, more work needs to be done in the area of model selection

within an IRT context.
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